

P-Channel Enhancement Mode Field Effect Transistor

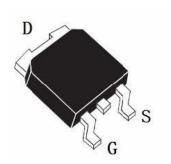
Description

The ACEA60P17A uses advanced trench technology to provide excellent R_{DS(ON)} and low gate charge. This device is suitable for use as a load switch or small power switching applications.

Features

- V_{DS} =-60V, I_{D} =-17A
- $R_{DS(ON)} \leq 125 m\Omega @ V_{GS} = -10V$
- $R_{DS(ON)} \leq 160 \text{m}\Omega \text{@ V}_{GS} = -4.5 \text{V}$

Absolute Maximum Ratings


Parameter		Symbol	Max	Unit
Drain-Source Voltage		V _{DSS}	-60	V
Gate-Source Voltage		V _{GSS}	±20	V
Drain Current (Continuous)*AC	T _A =25°C		-17	
	T _A =100°C	l _D	-10	Α
Drain Current (Pulsed)*B	I _{DM}	-30	Α	
Power Dissipation	T _A =25°C	P_D	50	W
Operating temperature / storage temperature		T _J /T _{STG}	-55~175	$^{\circ}\!\mathbb{C}$

A: The value of RθJA is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. The value in any given application depends on the user's specific board design.

- B: Repetitive rating, pulse width limited by junction temperature.
- C: The current rating is based on the t≤ 10s junction to ambient thermal resistance rating.

Packaging Type

TO-252

P-Channel Enhancement Mode Field Effect Transistor

Ordering information

ACE160P17A XX + H

Electrical Characteristics

T_A=25°C, unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit		
Static								
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_D = -250 \mu A$	-60			V		
Zero Gate Voltage Drain Current	I _{DSS1}	$V_{DS} = -48V, V_{GS} = 0V$			-1	μΑ		
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{GS} = V_{DS}$, I_{DS} = -250 μ A	-1.5		-3.5	V		
Gate Leakage Current	I_{GSS}	V_{GS} = ±20V , V_{DS} =0V			±100	nA		
Drain-Source On-state	R _{DS(on)}	$V_{GS} = -10V$, $I_{D} = -10A$		95	125	mΩ		
Resistance		$V_{GS} = -4.5V$, $I_D = -5A$		123	160			
Forward Trans Conductance	g FS	V_{DS} = -5V , I_D = -10A	8			S		
Diode Forward Voltage	V_{SD}	I_{SD} = -1A , V_{GS} = 0V			-1.2	V		
Maximum Body-Diode					-15	А		
Continuous Current	I _S							
Switching								
Total Gate Charge	Q_g	V_{DS} = -48V, I_{D} = -2A, V_{GS} = -10V		15.8		nC		
Gate-Source Charge	Q_gs			3		nC		
Gate-Drain Charge	Q_gd			3.5		nC		
Turn-on Delay Time	$t_{d(on)}$	V_{DD} = -10V, I_{D} = -1A, V_{GS} = -10V, R_{G} = 6 Ω		9		ns		
Turn-on Rise Time	t _r			10		ns		
Turn-off Delay Time	$t_{d(off)}$			25		ns		
Turn-off Fall Time	t_f			11		ns		
		Dynamic						
Input Capacitance	C_{iss}	V _{DS} =-30V,V _{GS} = 0V, f= 1.0MHz		987		pF		
Output Capacitance	C_{oss}			114		pF		
Reverse Transfer Capacitance	C_{rss}			46		pF		

P-Channel Enhancement Mode Field Effect Transistor

Typical Performance Characteristics

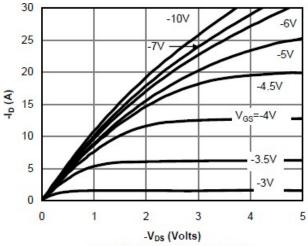


Fig 1: On-Region Characteristics

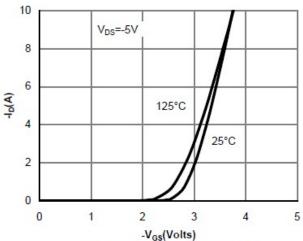


Figure 2: Transfer Characteristics

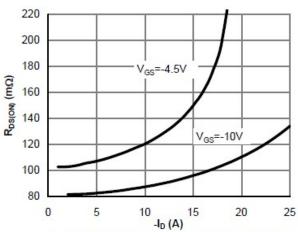


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

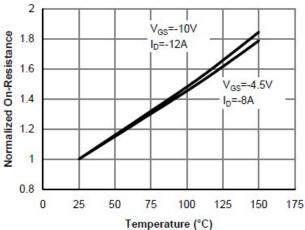


Figure 4: On-Resistance vs. Junction
Temperature

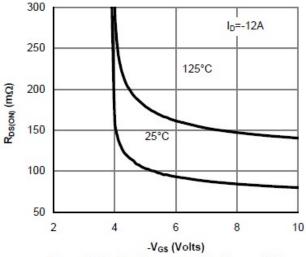


Figure 5: On-Resistance vs. Gate-Source Voltage

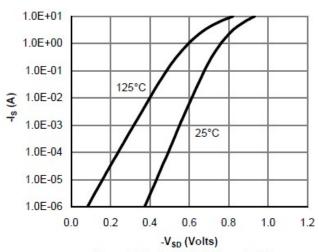
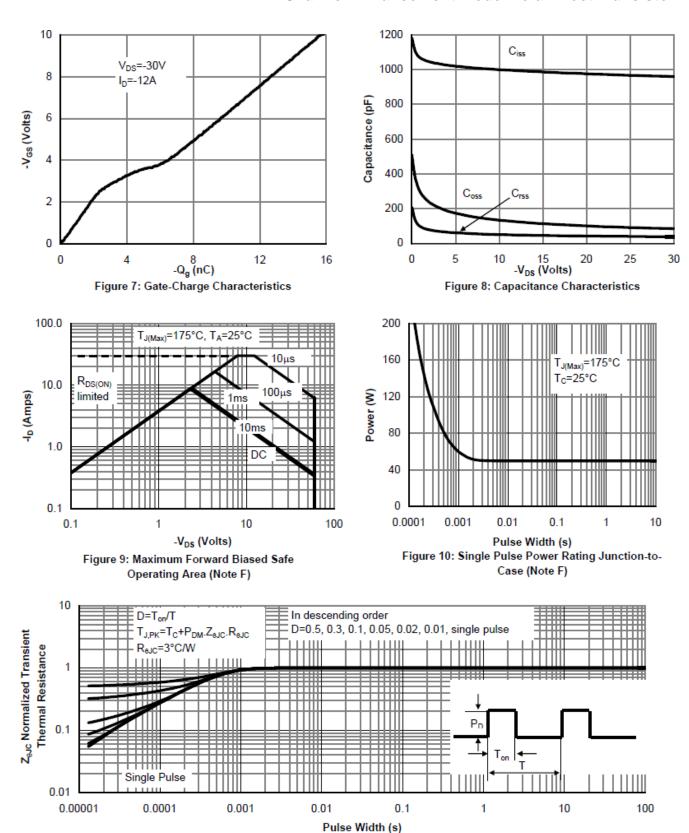
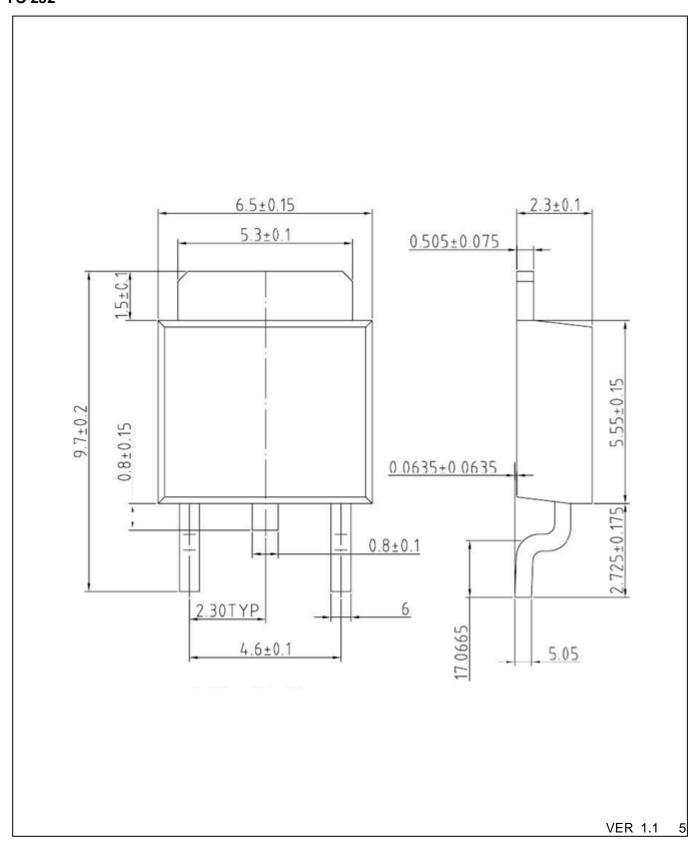


Figure 6: Body-Diode Characteristics

P-Channel Enhancement Mode Field Effect Transistor




Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

P-Channel Enhancement Mode Field Effect Transistor

Packing Information

TO-252

P-Channel Enhancement Mode Field Effect Transistor

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/